0 背景
在这之前大家在训练GAN的时候,使用的loss函数都是sigmoid_cross_entropy_loss函数,然而xudon mao等人发现当使用伪造样本去更新生成器(且此时伪造样本也被判别器判为对的时候)会导致梯度消失的问题。虽然此时伪造样本仍然离真实样本分布距离还挺远。也就是之前的损失函数虽然可以判别是真假,可是对于人肉眼来说,还是违和感太强了,也就是生成的图像质量骗得过机器,却骗不过人。
所以,由此,他们提出了更好的损失函数用于将伪造样本的分布推向于决策面(虽然无法直接推向真实样本的分布)。并且从中还发现,用此损失函数,可以增加训练GAN的稳定性。并且之前也有一些论文论述到GAN的不稳定训练一部分归咎于目标函数。特别是最小化之前GAN的目标函数时候的梯度消失问题,会导致更新生成器变得困难,而LSGAN是通过基于距离惩罚那些离决策面远的那些假样本,所以具有更多的梯度用于训练迭代。
1. LSGAN
1.1 目标函数
如上面所述,之前的目标函数为:
1.2 网络结构
xudon mao等人参考了vgg的网络结构,将LSGAN的生成器和判别器的网络结构设置成:
而且,他们在如何将GAN用于多类图片生成上也做了一些工作,如生成3740类的中文文字图片,这时候,自然灵感来自于条件GAN。所以,此时的网络结构不同于上面:
2. 实验结果
xudon mao等人还做了一些实验用于验证LSGAN的训练稳定性,如图